Skip to main content

Filtro De Média Móvel Exponencial



Médias móveis - médias simples e exponenciais Moving - simples e exponencial Introdução As médias móveis alisam os dados do preço para formar uma tendência que segue o indicador. Eles não prevêem a direção do preço, mas sim definir a direção atual com um atraso. As médias móveis são retardadas porque são baseadas em preços passados. Apesar deste atraso, as médias móveis ajudam a suavizar a ação dos preços e filtrar o ruído. Eles também formam os blocos de construção para muitos outros indicadores técnicos e sobreposições, como Bandas Bollinger. MACD eo Oscilador de McClellan. Os dois tipos mais populares de médias móveis são a Média Móvel Simples (SMA) e a Média Móvel Exponencial (EMA). Essas médias móveis podem ser usadas para identificar a direção da tendência ou definir níveis potenciais de suporte e resistência. Here039s um gráfico com um SMA e um EMA sobre ele: Simples Moving Average Cálculo Uma simples média móvel é formada por calcular o preço médio de um título sobre um determinado número de períodos. A maioria das médias móveis são baseadas em preços de fechamento. Uma média móvel simples de 5 dias é a soma de cinco dias dos preços de fechamento dividida por cinco. Como seu nome indica, uma média móvel é uma média que se move. Os dados antigos são eliminados à medida que novos dados são disponibilizados. Isso faz com que a média se mova ao longo da escala de tempo. Abaixo está um exemplo de uma média móvel de 5 dias evoluindo ao longo de três dias. O primeiro dia da média móvel cobre simplesmente os últimos cinco dias. O segundo dia da média móvel cai o primeiro ponto de dados (11) e adiciona o novo ponto de dados (16). O terceiro dia da média móvel continua caindo o primeiro ponto de dados (12) e adicionando o novo ponto de dados (17). No exemplo acima, os preços aumentam gradualmente de 11 para 17 ao longo de um total de sete dias. Observe que a média móvel também aumenta de 13 para 15 ao longo de um período de cálculo de três dias. Observe também que cada valor da média móvel está logo abaixo do último preço. Por exemplo, a média móvel para o dia um é igual a 13 eo último preço é 15. Os preços dos quatro dias anteriores eram mais baixos e isso faz com que a média móvel fique atrasada. Cálculo da média móvel exponencial As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. A ponderação aplicada ao preço mais recente depende do número de períodos na média móvel. Há três etapas para calcular uma média móvel exponencial. Primeiro, calcule a média móvel simples. Uma média móvel exponencial (EMA) tem que começar em algum lugar assim uma média móvel simples é usada como EMA do período anterior039s no primeiro cálculo. Em segundo lugar, calcular o multiplicador de ponderação. Em terceiro lugar, calcule a média móvel exponencial. A fórmula abaixo é para uma EMA de 10 dias. Uma média móvel exponencial de 10 períodos aplica uma ponderação de 18,18 ao preço mais recente. Um EMA de 10 períodos também pode ser chamado de EMA 18.18. Um EMA de 20 períodos aplica uma ponderação de 9,52 ao preço mais recente (2 (201) .0952). Observe que a ponderação para o período de tempo mais curto é mais do que a ponderação para o período de tempo mais longo. De fato, a ponderação cai pela metade cada vez que o período de média móvel dobra. Se você deseja uma porcentagem específica para uma EMA, use esta fórmula para convertê-la em períodos de tempo e insira esse valor como o parâmetro EMA039s: Abaixo está um exemplo de planilha de uma média móvel simples de 10 dias e um valor 10- Dia média móvel exponencial para a Intel. As médias móveis simples são diretas e exigem pouca explicação. A média de 10 dias simplesmente se move conforme novos preços se tornam disponíveis e os preços antigos caem. A média móvel exponencial começa com o valor da média móvel simples (22,22) no primeiro cálculo. Após o primeiro cálculo, a fórmula normal assume o controle. Como um EMA começa com uma média móvel simples, seu valor verdadeiro não será realizado até 20 ou mais períodos mais tarde. Em outras palavras, o valor na planilha do Excel pode diferir do valor do gráfico por causa do curto período de retorno. Esta planilha só remonta 30 períodos, o que significa que o efeito da média móvel simples teve 20 períodos para dissipar. StockCharts volta pelo menos 250 períodos (geralmente muito mais) para os seus cálculos para os efeitos da média móvel simples no primeiro cálculo totalmente dissipada. O fator de Lag Quanto maior a média móvel, mais o lag. Uma média móvel exponencial de 10 dias abraçará os preços muito de perto e virará logo após os preços se transformarem. Curtas médias móveis são como barcos de velocidade - ágeis e rápidos para mudar. Em contraste, uma média móvel de 100 dias contém muitos dados passados ​​que o desaceleram. Médias móveis mais longas são como petroleiros oceânicos - letárgicos e lentos para mudar. É preciso um movimento de preços maior e mais longo para uma média móvel de 100 dias para mudar de rumo. O gráfico acima mostra o SampP 500 ETF com uma EMA de 10 dias seguindo de perto os preços e uma moagem SMA de 100 dias mais alta. Mesmo com o declínio de janeiro-fevereiro, o SMA de 100 dias manteve o curso e não recusou. O SMA de 50 dias se encaixa em algum lugar entre as médias móveis de 10 e 100 dias quando se trata do fator de latência. Simples vs médias exponenciais Moving Embora existam diferenças claras entre médias móveis simples e médias móveis exponenciais, um não é necessariamente melhor do que o outro. As médias móveis exponenciais têm menos atraso e, portanto, são mais sensíveis aos preços recentes - e as recentes mudanças nos preços. As médias móveis exponenciais virarão antes de médias móveis simples. As médias móveis simples, por outro lado, representam uma verdadeira média de preços para todo o período de tempo. Como tal, as médias móveis simples podem ser mais adequadas para identificar níveis de suporte ou resistência. Preferência média móvel depende de objetivos, estilo analítico e horizonte de tempo. Chartists deve experimentar com ambos os tipos de médias móveis, bem como diferentes prazos para encontrar o melhor ajuste. O gráfico abaixo mostra a IBM com a SMA de 50 dias em vermelho ea EMA de 50 dias em verde. Ambos atingiram o pico no final de janeiro, mas o declínio no EMA foi mais nítida do que o declínio no SMA. A EMA apareceu em meados de fevereiro, mas a SMA continuou baixa até o final de março. Observe que a SMA apareceu mais de um mês após a EMA. Comprimentos e prazos A duração da média móvel depende dos objetivos analíticos. Curtas médias móveis (5-20 períodos) são mais adequados para as tendências de curto prazo e de negociação. Os cartistas interessados ​​em tendências de médio prazo optariam por médias móveis mais longas que poderiam estender 20-60 períodos. Investidores de longo prazo preferem médias móveis com 100 ou mais períodos. Alguns comprimentos de média móvel são mais populares do que outros. A média móvel de 200 dias é talvez a mais popular. Devido ao seu comprimento, esta é claramente uma média móvel a longo prazo. Em seguida, a média móvel de 50 dias é bastante popular para a tendência de médio prazo. Muitos chartists usam as médias móveis de 50 dias e de 200 dias junto. Curto prazo, uma média móvel de 10 dias foi bastante popular no passado porque era fácil de calcular. Um simplesmente adicionou os números e moveu o ponto decimal. Identificação de tendências Os mesmos sinais podem ser gerados usando médias móveis simples ou exponenciais. Como mencionado acima, a preferência depende de cada indivíduo. Esses exemplos abaixo usarão médias móveis simples e exponenciais. O termo média móvel se aplica a médias móveis simples e exponenciais. A direção da média móvel transmite informações importantes sobre os preços. Uma média móvel em ascensão mostra que os preços estão aumentando. Uma média móvel em queda indica que os preços, em média, estão caindo. A subida da média móvel a longo prazo reflecte uma tendência de alta a longo prazo. A queda da média móvel a longo prazo reflecte uma tendência de baixa a longo prazo. O gráfico acima mostra 3M (MMM) com uma média móvel exponencial de 150 dias. Este exemplo mostra quão bem as médias móveis funcionam quando a tendência é forte. A EMA de 150 dias recusou-se em novembro de 2007 e novamente em janeiro de 2008. Observe que foi necessário um declínio de 15 para reverter a direção dessa média móvel. Estes indicadores de atraso identificam inversões de tendência à medida que ocorrem (na melhor das hipóteses) ou depois de ocorrerem (na pior das hipóteses). MMM continuou menor em março de 2009 e, em seguida, subiu 40-50. Observe que a EMA de 150 dias não apareceu até depois desse aumento. Uma vez que o fez, no entanto, MMM continuou maior nos próximos 12 meses. As médias móveis trabalham brilhantemente em tendências fortes. Crossovers dobro Duas médias móveis podem ser usadas junto para gerar sinais do cruzamento. Na Análise Técnica dos Mercados Financeiros. John Murphy chama isso de método de cruzamento duplo. Os cruzamentos duplos envolvem uma média móvel relativamente curta e uma média móvel relativamente longa. Como com todas as médias móveis, o comprimento geral da média móvel define o tempo para o sistema. Um sistema usando um EMA de 5 dias e um EMA de 35 dias seria considerado de curto prazo. Um sistema usando uma SMA de 50 dias e uma SMA de 200 dias seria considerado de médio prazo, talvez até de longo prazo. Um crossover de alta ocorre quando a média móvel mais curta cruza acima da média móvel mais longa. Isso também é conhecido como uma cruz de ouro. Um crossover de baixa ocorre quando a média móvel mais curta cruza abaixo da média móvel mais longa. Isso é conhecido como uma cruz morta. Os crossovers médios móveis produzem sinais relativamente tardios. Afinal, o sistema emprega dois indicadores de atraso. Quanto mais longos os períodos de média móvel, maior o atraso nos sinais. Estes sinais funcionam muito bem quando uma boa tendência se apodera. No entanto, um sistema de crossover média móvel vai produzir lotes de whipsaws na ausência de uma forte tendência. Há também um método de cruzamento triplo que envolve três médias móveis. Novamente, um sinal é gerado quando a média móvel mais curta atravessa as duas médias móveis mais longas. Um simples sistema de crossover triplo pode envolver médias móveis de 5 dias, 10 dias e 20 dias. O gráfico acima mostra Home Depot (HD) com um EMA de 10 dias (linha pontilhada verde) e EMA de 50 dias (linha vermelha). A linha preta é o fechamento diário. Usando um crossover média móvel teria resultado em três whipsaws antes de pegar um bom comércio. O EMA de 10 dias quebrou abaixo do EMA de 50 dias em outubro atrasado (1), mas este não durou por muito tempo enquanto os 10 dias se moveram para trás acima em meados de novembro (2). Este cruzamento durou mais, mas o próximo cruzamento de baixa em janeiro (3) ocorreu perto dos níveis de preços de novembro, resultando em outro whipsaw. Esta cruz bearish não durou por muito tempo porque o EMA de 10 dias moveu para trás acima dos 50 dias alguns dias mais tarde (4). Depois de três sinais ruins, o quarto sinal prefigurou um forte movimento como o estoque avançado mais de 20. Existem dois takeaways aqui. Primeiramente, os crossovers são prone ao whipsaw. Um filtro de preço ou tempo pode ser aplicado para ajudar a evitar whipsaws. Os comerciantes podem exigir que o crossover durar 3 dias antes de agir ou exigir a EMA de 10 dias para mover acima abaixo da EMA de 50 dias por um determinado montante antes de agir. Em segundo lugar, MACD pode ser usado para identificar e quantificar esses cruzamentos. MACD (10,50,1) mostrará uma linha representando a diferença entre as duas médias móveis exponenciais. MACD torna-se positivo durante uma cruz dourada e negativo durante uma cruz morta. O Oscilador de Preço Percentual (PPO) pode ser usado da mesma forma para mostrar diferenças percentuais. Observe que o MACD eo PPO são baseados em médias móveis exponenciais e não se igualam a médias móveis simples. Este gráfico mostra Oracle (ORCL) com a EMA de 50 dias, EMA de 200 dias e MACD (50,200,1). Houve quatro cruzamentos de média móvel em um período de 2 12 anos. Os três primeiros resultaram em whipsaws ou maus negócios. Uma tendência sustentada começou com o quarto crossover como ORCL avançado para os 20s meados. Mais uma vez, os crossovers de média móvel funcionam muito bem quando a tendência é forte, mas produzem perdas na ausência de uma tendência. Crossovers de preço As médias móveis também podem ser usadas para gerar sinais com cruzamentos de preços simples. Um sinal de alta é gerado quando os preços se movem acima da média móvel. Um sinal de baixa é gerado quando os preços se movem abaixo da média móvel. Os crossovers do preço podem ser combinados para negociar dentro da tendência mais grande. A média móvel mais longa define o tom para a tendência maior e a média móvel mais curta é usada para gerar os sinais. Um olharia para cruzes de preço de alta somente quando os preços já estão acima da média móvel mais longa. Isso seria negociar em harmonia com a maior tendência. Por exemplo, se o preço estiver acima da média móvel de 200 dias, os chartistas só se concentrarão nos sinais quando o preço se mover acima da média móvel de 50 dias. Obviamente, um movimento abaixo da média móvel de 50 dias precederia tal sinal, mas tais cruzamentos de baixa seriam ignorados porque a maior tendência é para cima. Uma cruz bearish sugeriria simplesmente um pullback dentro de um uptrend mais grande. Um cruzamento acima da média móvel de 50 dias indicaria uma subida dos preços e continuação da maior tendência de alta. O gráfico a seguir mostra Emerson Electric (EMR) com a EMA de 50 dias e EMA de 200 dias. A ação moveu-se acima e manteve-se acima da média móvel de 200 dias em agosto. Houve mergulhos abaixo dos 50 dias EMA no início de novembro e novamente no início de fevereiro. Os preços recuaram rapidamente acima dos 50 dias EMA para fornecer sinais de alta (setas verdes) em harmonia com a maior tendência de alta. MACD (1,50,1) é mostrado na janela do indicador para confirmar cruzamentos de preços acima ou abaixo da EMA de 50 dias. O EMA de 1 dia é igual ao preço de fechamento. MACD (1,50,1) é positivo quando o fechamento está acima do EMA de 50 dias e negativo quando o fechamento está abaixo do EMA de 50 dias. Suporte e Resistência As médias móveis também podem atuar como suporte em uma tendência de alta e resistência em uma tendência de baixa. Uma tendência de alta de curto prazo pode encontrar apoio perto da média móvel simples de 20 dias, que também é usada em Bandas de Bollinger. Uma tendência de alta de longo prazo pode encontrar suporte perto da média móvel simples de 200 dias, que é a média móvel mais popular a longo prazo. Se fato, a média móvel de 200 dias pode oferecer suporte ou resistência simplesmente porque é tão amplamente utilizado. É quase como uma profecia auto-realizável. O gráfico acima mostra o NY Composite com a média móvel simples de 200 dias de meados de 2004 até o final de 2008. Os 200 dias de suporte fornecido várias vezes durante o avanço. Uma vez que a tendência revertida com uma ruptura de apoio superior dupla, a média móvel de 200 dias agiu como resistência em torno de 9500. Não espere suporte exato e níveis de resistência de médias móveis, especialmente as médias móveis mais longas. Os mercados são impulsionados pela emoção, o que os torna propensos a superações. Em vez de níveis exatos, as médias móveis podem ser usadas para identificar zonas de suporte ou de resistência. Conclusões As vantagens de usar médias móveis precisam ser ponderadas contra as desvantagens. As médias móveis são a tendência que segue, ou retardar, os indicadores que serão sempre um passo atrás. Isso não é necessariamente uma coisa ruim embora. Afinal, a tendência é o seu amigo e é melhor para o comércio na direção da tendência. As médias móveis asseguram que um comerciante está em linha com a tendência atual. Mesmo que a tendência é seu amigo, os títulos gastam uma grande quantidade de tempo em intervalos de negociação, o que torna as médias móveis ineficazes. Uma vez em uma tendência, as médias móveis mantê-lo-ão dentro, mas igualmente dar sinais atrasados. Don039t esperam vender no topo e comprar na parte inferior usando médias móveis. Tal como acontece com a maioria das ferramentas de análise técnica, as médias móveis não devem ser utilizadas por conta própria, mas em conjunto com outras ferramentas complementares. Os cartistas podem usar médias móveis para definir a tendência geral e, em seguida, usar o RSI para definir os níveis de sobrecompra ou sobrevenda. Adicionando médias móveis para gráficos StockCharts As médias móveis estão disponíveis como um recurso de sobreposição de preço na bancada do SharpCharts. Usando o menu suspenso Sobreposições, os usuários podem escolher uma média móvel simples ou uma média móvel exponencial. O primeiro parâmetro é usado para definir o número de períodos de tempo. Um parâmetro opcional pode ser adicionado para especificar qual campo de preço deve ser usado nos cálculos - O para o aberto, H para o alto, L para o baixo e C para o fechamento. Uma vírgula é usada para separar parâmetros. Outro parâmetro opcional pode ser adicionado para deslocar as médias móveis para a esquerda (passado) ou para a direita (futuro). Um número negativo (-10) deslocaria a média móvel para a esquerda 10 períodos. Um número positivo (10) deslocaria a média móvel para o direito 10 períodos. Múltiplas médias móveis podem ser superadas o preço parcela simplesmente adicionando outra linha de superposição para a bancada. Os membros do StockCharts podem alterar as cores eo estilo para diferenciar entre várias médias móveis. Depois de selecionar um indicador, abra Opções Avançadas clicando no pequeno triângulo verde. As Opções Avançadas também podem ser usadas para adicionar uma sobreposição média móvel a outros indicadores técnicos como RSI, CCI e Volume. Clique aqui para um gráfico ao vivo com várias médias móveis diferentes. Usando Médias Móveis com Varreduras StockCharts Aqui estão alguns exemplos de varreduras que os membros do StockCharts podem usar para varrer para várias situações de média móvel: Bullish Moving Average Cross: Esta varredura procura ações com uma média móvel em ascensão de 150 dias simples e uma cruz de alta das 5 EMA de dia e EMA de 35 dias. A média móvel de 150 dias está subindo, desde que ela esteja negociando acima de seu nível há cinco dias. Um cruzamento de alta ocorre quando o EMA de 5 dias se move acima do EMA de 35 dias em volume acima da média. Bearish Moving Average Cross: Este analisa procura por ações com uma queda de 150 dias de média móvel simples e um cruzamento de baixa da EMA de 5 dias e EMA de 35 dias. A média móvel de 150 dias está caindo, enquanto ela está negociando abaixo do seu nível cinco dias atrás. Uma cruz de baixa ocorre quando a EMA de 5 dias se move abaixo da EMA de 35 dias acima do volume médio. Estudo adicional O livro de John Murphy tem um capítulo dedicado a médias móveis e seus vários usos. Murphy abrange os prós e os contras de médias móveis. Além disso, Murphy mostra como as médias móveis funcionam com Bollinger Bands e sistemas de negociação baseados em canais. Análise Técnica dos Mercados Financeiros John MurphySmoothing dados remove variação aleatória e mostra tendências e componentes cíclicos Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é suavizar. Essa técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de alisamento Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Vamos primeiro investigar alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico oferece em unidades de 1000 dólares. Heshe toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média computada ou média dos dados 10. O gerente decide usar isto como a estimativa para despesa de um fornecedor típico. Esta é uma boa ou má estimativa O erro quadrático médio é uma forma de julgar o quão bom é um modelo Vamos calcular o erro quadrático médio. O valor verdadeiro do erro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados da MSE por exemplo Os resultados são: Erro e esquadrado Erros A estimativa 10 A pergunta surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência? Um olhar para o gráfico abaixo mostra claramente que não devemos fazer isso. A média pondera todas as observações passadas igualmente Em resumo, afirmamos que A média simples ou média de todas as observações passadas é apenas uma estimativa útil para previsão quando não há tendências. Se houver tendências, use estimativas diferentes que levem em conta a tendência. A média pesa todas as observações passadas igualmente. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra maneira de calcular a média é adicionando cada valor dividido pelo número de valores, ou 33 43 53 1 1.3333 1.6667 4. O multiplicador 13 é chamado de peso. Em geral: barra fração soma esquerda (fratura direita) x1 esquerda (fratura direita) x2,. ,, Esquerda (frac direito) xn. O (esquerdo (direito de fracto)) são os pesos e, naturalmente, somam a 1. Filtro exponencial Esta página descreve a filtração exponencial, o filtro o mais simples eo mais popular. Isso faz parte da seção Filtragem que faz parte de Um guia para detecção de falhas e diagnóstico. Visão geral, constante de tempo e equivalente analógico O filtro mais simples é o filtro exponencial. Ele tem apenas um parâmetro de ajuste (diferente do intervalo de amostra). Ele requer o armazenamento de apenas uma variável - a saída anterior. É um filtro IIR (auto-regressivo) - os efeitos de uma mudança de entrada decai exponencialmente até que os limites das telas ou a aritmética do computador o escondam. Em várias disciplinas, o uso deste filtro também é referido como suavização 8220exponencial8221. Em algumas disciplinas, como a análise de investimento, o filtro exponencial é chamado de 8220Motiva Mínima PonderadaExponencialmente (EWMA), ou apenas 8220Motiva MínimaExponencial8221 (EMA). Isso viola a tradicional terminologia ARMA 8220moving average8221 da análise de séries temporais, uma vez que não há histórico de entrada usado - apenas a entrada atual. É o equivalente em tempo discreto do lag8221 de primeira ordem comumente usado na modelagem analógica de sistemas de controle de tempo contínuo. Em circuitos elétricos, um filtro RC (filtro com um resistor e um capacitor) é um atraso de primeira ordem. Quando se enfatiza a analogia com os circuitos analógicos, o parâmetro de ajuste único é a constante de tempo 8220, geralmente escrita como a letra grega Tau (). De facto, os valores nos tempos de amostra discretos correspondem exactamente ao intervalo de tempo contínuo equivalente com a mesma constante de tempo. A relação entre a implementação digital e a constante de tempo é mostrada nas equações abaixo. Equações do filtro exponencial e inicialização O filtro exponencial é uma combinação ponderada da estimativa anterior (saída) com os dados de entrada mais recentes, com a soma dos pesos iguais a 1 de modo que a saída corresponde à entrada no estado estacionário. Seguindo a notação de filtro já introduzida: y (k) ay (k-1) (1-a) x (k) onde x (k) é a entrada bruta no tempo ky (k) é a saída filtrada no tempo passo ka É uma constante entre 0 e 1, normalmente entre 0,8 e 0,99. (A-1) ou a é às vezes chamado 8220smoothing constante8221. Para sistemas com um passo de tempo fixo T entre amostras, a constante 8220a8221 é calculada e armazenada por conveniência apenas quando o programador de aplicações especifica um novo valor da constante de tempo desejada. Para sistemas com amostragem de dados em intervalos irregulares, a função exponencial acima deve ser usada com cada passo de tempo, onde T é o tempo desde a amostra anterior. A saída do filtro normalmente é inicializada para corresponder à primeira entrada. À medida que a constante de tempo se aproxima de 0, a vai para zero, então não há filtragem 8211 a saída é igual à nova entrada. Como a constante de tempo fica muito grande, um aproxima-se 1, de modo que a nova entrada é quase ignorado 8211 filtragem muito pesado. A equação de filtro acima pode ser rearranjada no seguinte equi - valente preditor-corretor: Esta forma torna mais aparente que a estimativa variável (saída do filtro) é predita como inalterada da estimativa anterior y (k-1) mais um termo de correção baseado No inesperado 8220innovation8221 - a diferença entre a nova entrada x (k) ea previsão y (k-1). Esta forma é também o resultado de derivar o filtro exponencial como um simples caso especial de um filtro de Kalman. Que é a solução ótima para um problema de estimação com um conjunto particular de suposições. Passo resposta Uma maneira de visualizar o funcionamento do filtro exponencial é traçar sua resposta ao longo do tempo para uma entrada passo. Ou seja, começando com a entrada e saída do filtro em 0, o valor de entrada é repentinamente alterado para 1. Os valores resultantes são plotados abaixo: No gráfico acima, o tempo é dividido pela constante de tempo do filtro tau para que você possa mais facilmente prever Os resultados para qualquer período de tempo, para qualquer valor da constante de tempo do filtro. Após um tempo igual à constante de tempo, a saída do filtro aumenta para 63,21 do seu valor final. Após um tempo igual a 2 constantes de tempo, o valor sobe para 86,47 do seu valor final. As saídas após tempos iguais a 3,4 e 5 constantes de tempo são 95,02, 98,17 e 99,33 do valor final, respectivamente. Uma vez que o filtro é linear, isto significa que estas percentagens podem ser utilizadas para qualquer magnitude da alteração de passo, não apenas para o valor de 1 utilizado aqui. Embora a resposta passo em teoria leva um tempo infinito, de um ponto de vista prático, pense no filtro exponencial como 98 a 99 8220 done8221 respondendo após um tempo igual a 4 a 5 constantes de tempo de filtro. Variações no filtro exponencial Existe uma variação do filtro exponencial chamado filtro exponencial não-linear, que pretende filtrar fortemente o ruído dentro de uma determinada amplitude, mas então responder mais rapidamente a alterações maiores. O que são RC Filtering e Exponential Averaging e como eles diferem A resposta para a segunda parte da questão é que eles são o mesmo processo Se um vem de um fundo de eletrônica Copyright 2010 - 2013, Greg Stanley Então RC Filtering (ou RC Smoothing) é a expressão usual. Por outro lado uma abordagem baseada em estatísticas de séries temporais tem o nome de média exponencial, ou usar o nome completo ponderada exponencial média móvel. Isso também é conhecido como EWMA ou EMA. Uma vantagem chave do método é a simplicidade da fórmula para calcular a próxima saída. É preciso uma fração da saída anterior e uma menos essa fração vezes a entrada atual. Algebricamente no tempo k a saída suavizada y k é dada por Como mostrado mais adiante esta fórmula simples enfatiza eventos recentes, suaviza as variações de alta freqüência e revela tendências de longo prazo. Observe que há duas formas da equação de média exponencial, uma acima e uma variante Ambas estão corretas. Consulte as notas no final do artigo para obter mais detalhes. Nesta discussão usaremos apenas a equação (1). A fórmula acima é por vezes escrita de forma mais limitada. Como é derivada esta fórmula e qual é a sua interpretação Um ponto chave é como podemos selecionar. Para olhar para esta uma maneira simples é considerar um filtro de baixa passagem RC. Agora, um filtro passa-baixo RC é simplesmente uma resistência em série R e um condensador paralelo C como ilustrado abaixo. A equação da série de tempo para este circuito é O produto RC tem unidades de tempo e é conhecido como a constante de tempo, T. Para o circuito. Suponha que representamos a equação acima em sua forma digital para uma série de tempo que tem dados tomados a cada h segundos. Esta é exatamente a mesma forma que a equação anterior. Comparando os dois relacionamentos para um temos que reduz à relação muito simples. Daí a escolha de N é guiada por qual constante de tempo escolhemos. Agora a equação (1) pode ser reconhecida como um filtro passa-baixa ea constante de tempo tipifica o comportamento do filtro. Para ver o significado da Constante de Tempo, precisamos examinar a característica de freqüência deste filtro RC de passa baixa. Em sua forma geral isto é Expressando em módulo e forma de fase temos onde o ângulo de fase é. A freqüência é chamada freqüência de corte nominal. Fisicamente pode ser mostrado que a esta frequência a potência no sinal foi reduzida em metade e a amplitude é reduzida pelo factor. Em termos de dB esta frequência é onde a amplitude foi reduzida em 3dB. Claramente, à medida que a constante de tempo T aumenta, então a freqüência de corte diminui e aplicamos mais suavização aos dados, ou seja, eliminamos as freqüências mais altas. É importante notar que a resposta de freqüência é expressa em radianssegundo. Isso é há um fator de envolvido. Por exemplo, escolher uma constante de tempo de 5 segundos dá uma freqüência de corte efetiva de. Um uso popular do alisamento de RC é simular a ação de um medidor tal como usado em um Medidor de Nível de Som. Geralmente são tipificados por sua constante de tempo, como 1 segundo para tipos S e 0,125 segundos para tipos F. Para estes 2 casos, as frequências de corte efectivas são 0,16 Hz e 1,27 Hz, respectivamente. Na verdade, não é a constante de tempo que normalmente desejamos selecionar, mas aqueles períodos que desejamos incluir. Suponha que temos um sinal onde desejamos incluir características com um P segundo período. Agora um período P é uma freqüência. Poderíamos então escolher uma constante de tempo T dada por. No entanto, sabemos que perdemos cerca de 30 da saída (-3dB) em. Assim, escolher uma constante de tempo que corresponde exatamente às periodicidades que desejamos manter não é o melhor esquema. Geralmente, é melhor escolher uma freqüência de corte ligeiramente maior, digamos. A constante de tempo é então que, em termos práticos, é semelhante a. Isso reduz a perda para cerca de 15 nesta periodicidade. Portanto, em termos práticos para reter eventos com uma periodicidade de ou maior, em seguida, escolher uma constante de tempo de. Isso inclui os efeitos das periodicidades de até cerca de. Por exemplo, se quisermos incluir os efeitos de eventos acontecendo com dizer um período de 8 segundos (0,125Hz), então escolha uma constante de tempo de 0,8 segundos. Isto dá uma frequência de corte de aproximadamente 0,2Hz de modo que o nosso período de 8 segundos está bem na faixa de passagem principal do filtro. Se estivéssemos a amostragem dos dados a 20 timesecond (h 0,05) então o valor de N é (0,80.05) 16 e. Isso dá algumas dicas sobre como definir. Basicamente, para uma taxa de amostragem conhecida, ela tipifica o período de média e seleciona quais flutuações de alta freqüência serão ignoradas. Observando a expansão do algoritmo podemos ver que ele favorece os valores mais recentes, e também por que é referido como ponderação exponencial. Nós temos Substituindo por y k-1 dá Repetindo este processo várias vezes leva a Porque está no intervalo, então, claramente os termos para a direita tornam-se menores e se comportam como uma decrescente exponencial. Essa é a saída atual é tendenciosa para os eventos mais recentes, mas quanto maior nós escolhemos T, então o viés menos. Em resumo vemos que a fórmula simples enfatiza eventos recentes suaviza eventos de alta freqüência (curto período) que revelam tendências de longo prazo Precaução Existem duas formas da equação de média exponencial que aparecem na literatura. Ambos são corretos e equivalentes. A primeira forma como mostrado acima é (A1) A forma alternativa é 8230 (A2) Observe o uso de na primeira equação e na segunda equação. Em ambas as equações e são valores entre zero e unidade. Em termos físicos, significa que a escolha da forma que se usa depende de como se quer pensar em tomar como a equação da fração de alimentação (A1) ou Como a fração da equação de entrada (A2). A primeira forma é ligeiramente menos complicada em mostrar a relação de filtro RC, e leva a uma compreensão mais simples em termos de filtro. Analista Principal de Processamento de Sinais do Prosig Dr. Colin Mercer foi anteriormente no Instituto de Pesquisas de Som e Vibração (ISVR) da Universidade de Southampton, onde fundou o Data Analysis Center. Em seguida, ele prosseguiu com a fundação de Prosig em 1977. Colin se aposentou como Analista de Processamento de Sinais em Prosig em dezembro de 2016. Ele é Engenheiro Agrónomo e Membro da British Computer Society. Eu acho que você quer mudar o 8216p8217 para o símbolo de pi. Marco, obrigado por apontar isso. Acho que este é um dos nossos artigos mais antigos que foi transferido de um antigo documento de processamento de texto. Obviamente, o editor (eu) não conseguiu detectar que o pi não tinha sido transcrita corretamente. Ele será corrigido em breve. Eu acho que existe um erro na fórmula para T. Deve ser T h (N-1), não T (N-1) h. Mike, obrigado por perceber isso. Acabei de verificar novamente para Dr. Mercer8217s nota técnica original em nosso arquivo e parece que houve erro feito ao transferir as equações para o blog. Vamos corrigir o post. Obrigado por nos deixar saber Obrigado obrigado obrigado. Você pode ler 100 textos DSP sem encontrar nada dizendo que um filtro de média exponencial é o equivalente a um filtro R-C. Hmm, você tem a equação para um filtro EMA correto não é Yk aXk (1-a) Yk-1 ao invés de Yk aYk-1 (1-a) Xk Alan, Ambas as formas da equação aparecem na literatura e Ambos os formulários estão corretos como mostrarei abaixo. O ponto que você faz é importante porque usar a forma alternativa significa que a relação física com um filtro RC é menos aparente, além disso a interpretação do significado de um mostrado no artigo não é apropriado para a forma alternativa. Primeiro vamos mostrar que ambas as formas estão corretas. A forma da equação que eu usei é ea forma alternativa que aparece em muitos textos é Note no acima Eu usei latex 1latex na primeira equação e latex 2latex na segunda equação. A igualdade de ambas as formas da equação é demonstrada matematicamente abaixo de passos simples de cada vez. O que não é o mesmo é o valor usado para latex latex em cada equação. Em ambas as formas latex latex é um valor entre zero e unidade. Primeiro reescreva a equação (1) substituindo o latex 1latex pelo látex látex. Isto dá latexy y (1 - beta) xklatex 8230 (1A) Agora defina latexbeta (1 - 2) látex e por isso também temos latex 2 (1 - beta) de látex. Substituindo estes na equação (1A) dá latexyk (1 - 2) y 2xklatex 8230 (1B) E finalmente re-arranjar dá Esta equação é idêntica à forma alternativa dada na equação (2). Coloque mais simplesmente látex 2 (1 - 1) de látex. Em termos físicos, isso significa que a escolha da forma que se usa depende de como se quer pensar em tomar latexalphalatex como a equação da fração de feed back (1) ou como a fração da equação de entrada (2). Como mencionado acima eu usei a primeira forma, pois é um pouco menos pesado em mostrar a relação de filtro RC, e leva a uma compreensão mais simples em termos de filtro. No entanto omitindo o acima é, na minha opinião, uma deficiência no artigo como outras pessoas poderiam fazer uma inferência incorreta para uma versão revista aparecerá em breve. Sempre me perguntei sobre isso, obrigado por descrevê-lo tão claramente. Eu acho que outra razão a primeira formulação é agradável é mapas alfa para 8216smoothness8217: uma maior escolha de alfa significa uma saída 8216more smooth8217. Michael Obrigado pela observação 8211 Vou acrescentar ao artigo algo nessas linhas, pois é sempre melhor, em minha opinião, relacionar-se com aspectos físicos. Dr. Mercer, excelente artigo, obrigado. Tenho uma pergunta sobre a constante de tempo quando usado com um detector rms como em um medidor de nível de som que você se refere no artigo. Se eu usar suas equações para modelar um filtro exponencial com Constante de Tempo 125ms e usar um sinal de passo de entrada, eu realmente obter uma saída que, após 125ms, é 63.2 do valor final. No entanto, se eu quadrado o sinal de entrada e colocar isso através do filtro, então eu vejo que eu preciso dobrar a constante de tempo para que o sinal de chegar a 63,2 do seu valor final em 125ms. Você pode me informar se isso é esperado. Muito Obrigado. Ian Ian, Se você quadrado um sinal como uma onda senoidal, em seguida, basicamente, você está dobrando a freqüência de sua fundamental, bem como a introdução de lotes de outras freqüências. Como a frequência foi, com efeito, dobrada, então está sendo reduzida 8217 por uma quantidade maior pelo filtro passa-baixo. Em consequência, leva mais tempo para atingir a mesma amplitude. A operação de quadratura é uma operação não linear, então eu não acho que ela sempre dobrará precisamente em todos os casos, mas tenderá a dobrar se tivermos uma freqüência baixa dominante. Observe também que o diferencial de um sinal quadrado é o dobro do diferencial do sinal 8220un-squared8221. Eu suspeito que você pode estar tentando obter uma forma de quadrado médio suavização, que é perfeitamente bem e válido. Pode ser melhor aplicar o filtro e, em seguida, quadrado como você sabe o corte eficaz. Mas se tudo o que você tem é o sinal quadrado, em seguida, usando um fator de 2 para modificar o seu filtro de valor alfa irá aproximá-lo de volta para a freqüência de corte original, ou colocá-lo um pouco mais simples definir sua freqüência de corte em duas vezes o original. Obrigado pela sua resposta Dr. Mercer. Minha pergunta era realmente tentar obter o que é realmente feito em um rms detector de um medidor de nível de som. Se a constante de tempo for definida para 8216fast8217 (125 ms) eu teria pensado que intuitivamente você esperaria um sinal de entrada sinusoidal para produzir uma saída de 63,2 do seu valor final após 125ms, mas desde que o sinal está sendo quadrado antes de chegar ao 8216mean8217 Detecção, ele vai realmente ter duas vezes o tempo que você explicou. O objetivo principal do artigo é mostrar a equivalência da filtragem RC e da média exponencial. Se estamos discutindo o tempo de integração equivalente a um verdadeiro integrador retangular, então você está correto que há um fator de dois envolvidos. Basicamente, se temos um verdadeiro integrador retangular que integra para Ti segundos o tempo equivalente RC integator para alcançar o mesmo resultado é 2RC segundos. Ti é diferente do constante RC 8216 constante 8217 T que é RC. Assim, se temos uma constante de tempo 8216Fast8217 de 125 ms, que é RC 125 ms, então isso é equivalente a um verdadeiro tempo de integração de 250 msec Obrigado pelo artigo, foi muito útil. Existem alguns trabalhos recentes em neurociência que usam uma combinação de filtros EMA (EMA de curta janela EMI 8211 de longa janela EMA) como um filtro passa-banda para análises de sinal em tempo real. Eu gostaria de aplicá-los, mas eu estou lutando com os tamanhos de janela diferentes grupos de pesquisa têm utilizado e sua correspondência com a freqüência de corte. Let8217s dizer que eu quero manter todas as freqüências abaixo de 0,5Hz (aprox) e que eu adquiro 10 amostras em segundo. Isso significa que fp 0.5Hz P 2s T P100.2 h 1fs0.1 Portanto, o tamanho da janela I deve estar usando deve ser N3. É este raciocínio correto Antes de responder à sua pergunta eu tenho que comentar sobre o uso de dois filtros de alta passagem para formar um filtro passa banda. Presumivelmente, eles funcionam como dois fluxos separados, então um resultado é o conteúdo de látex latexf para meia taxa de amostragem eo outro é o conteúdo de látex latexf dizer a metade taxa de amostragem. Se tudo o que está sendo feito é a diferença nos níveis quadrados médios como indicando a potência na faixa de látex latex para latex latex, então pode ser razoável se as duas freqüências de corte são suficientemente distantes, mas eu espero que as pessoas que usam esta técnica Estão tentando simular um filtro de banda mais estreito. Na minha opinião, isso não seria confiável para um trabalho sério e seria motivo de preocupação. Apenas para referência um filtro passa banda é uma combinação de um filtro passa-alta de baixa freqüência para remover as baixas freqüências e um filtro passa-baixa de alta freqüência para remover as altas freqüências. Existe naturalmente uma forma de passagem baixa de um filtro RC, e consequentemente uma EMA correspondente. Talvez, embora o meu julgamento seja excessivamente crítico sem conhecer todos os fatos. Então, por favor, me envie algumas referências aos estudos que você mencionou para que eu critique como apropriado. Talvez eles estão usando um passe baixo, bem como um filtro passa-alta. Agora voltando-se para a sua pergunta real sobre como determinar N para uma dada freqüência de corte de alvo, eu acho que é melhor usar a equação básica T (N-1) h. A discussão sobre os períodos foi destinada a dar às pessoas uma sensação do que estava acontecendo. Então veja a derivação abaixo. Temos os relacionamentos latexT (N-1) hlatex e latexT12 latex onde latexfclatex é a freqüência de corte nocional e h é o tempo entre amostras, claramente latexh 1 látex onde latexfslatex é a taxa de amostragem em samplessec. A reorganização de T (N-1) h numa forma adequada para incluir a frequência de corte, latexfclatex e a taxa de amostragem, latexfslatex, é mostrada abaixo. Assim, usando latexfc 0.5Hzlatex e latexfs 10latex samplessec para que latex (fcfs) 0.05latex dá Então, o valor inteiro mais próximo é 4. Re-organizar o acima temos Então, com N4 temos latexfc 0.5307 Hzlatex. Utilizando N3 dá-se um latexfclatex de 0,318 Hz. Nota com N1 temos uma cópia completa sem filtragem.

Comments